COS 423

Problem Set No. 3

Due: Wednesday April 7
Spring 2004

1. (See CLRS Problem 8-4, pp.179-180) Suppose that you are given
[image: image1.wmf]n

 red and
[image: image2.wmf]n

 blue water jugs, all of different shapes and sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover, for every red jug, there is a blue jug that holds the same amount of water, and vice-versa.

It is your task to find a grouping of the jugs into pairs of red and blue jugs that hold the same amount of water. To do so, you may perform the following operation: pick a pair of jugs in which one is red and one is blue, fill the red jug with water, and then pour the water into the blue jug. This operation will tell you whether the red or the blue jug can hold more water, or if they are of the same volume. Assume that such a comparison takes one time unit. Your goal is to find an algorithm that makes a minimum number of comparisons to determine the grouping. Note that you are not allowed to directly test a red jug against a red jug, or a blue jug against a blue jug.
a. Prove a lower bound of
[image: image3.wmf](log)

nn

W

 on the worst-case number of comparisons an algorithm for this problem must make.

b. Give a randomized algorithm whose expected number of comparisons is
[image: image4.wmf]O(log),

nn

 and prove that this bound is correct. Hint: consider quicksort (CLRS Chapter 7). What is the worst-case number of comparisons for your algorithm?
c. (extra credit) Give the tightest bounds you can on the deterministia complexity of this problem. You will get some credit for any upper bound better than
[image: image5.wmf]2

O()

n

 and/or any lower bound better than
[image: image6.wmf](log)

nn

W

.

2. (See CLRS Exercise 21.3-4, page 509) Show that any sequence of
[image: image7.wmf]m

 make-set, find-set, and link operations, where all the links appear before any of the find-set operations, takes only
[image: image8.wmf]O()

m

time if path compression is used, no matter what method is used for linking (as long as linking takes O(1)time).
3. (CLRS Problem 21-3, page 521) The nearest common ancestor of two nodes u and v in a rooted tree T is the node w that is an ancestor of both u and v and that has the greatest depth in T. In the off-line nearest-common-ancestors problem, we are given a rooted tree T and an arbitrary set P = {{u, v}} of unordered pairs of nodes in T, and we wish to determine the nearest common ancestor of each pair in P.

To solve the off-line nearest-common-ancestors problem, the following procedure performs a tree walk of T with the initial call NCA(root[T]). Each node is assumed to be colored WHITE prior to the walk.
NCA(u)

 1 MAKE-SET(u)

 2 ancestor[FIND-SET(u)] ← u

 3 for each child v of u in T

 4 do NCA(v)

 5 UNION(u, v)

 6 ancestor[FIND-SET(u)] ← u

 7 color[u] ← BLACK

 8 for each node v such that {u, v}
[image: image9.wmf]Î

 P

 9 do if color[v] = BLACK

10 then print "The nearest common ancestor of"

 u "and" v "is" ancestor[FIND-SET(v)]
a. Argue that line 10 is executed exactly once for each pair {u, v}
[image: image10.wmf]Î

 P.

b. Argue that at the time of the call NCA(u), the number of sets in the disjoint-set data structure is equal to the depth of u in T.

c. Prove that NCA correctly prints the nearest common ancestor of u and v for each pair {u, v}
[image: image11.wmf]Î

 P.

d. Analyze the running time of NCA, assuming that we use the implementation of the disjoint-set data structure in Section 21.3 with path compression and union by rank.
4. (See CLRS Problem 23-1, page 575) Let G = (V, E) be an undirected, connected graph with weight function w : E → R, and suppose that |E| ≥ |V| and all edge weights are distinct.

A second-best minimum spanning tree is any minimum-weight spanning tree among all spanning trees except the one(s) of minimum weight.

a. Show that the minimum spanning tree is unique, but that the second-best minimum spanning tree need not be unique.
b. Let T be a minimum spanning tree of G. Prove that there exist edges (u, v)
[image: image12.wmf]Î

 T and (x, y)
[image: image13.wmf]Ï

 T such that T - {(u, v)}
[image: image14.wmf]U

{(x, y)} is a second-best minimum spanning tree of G.

c. Let T be a spanning tree of G and, for any two vertices u, v
[image: image15.wmf]Î

 V, let max[u, v] be an edge of maximum weight on the unique path between u and v in T. Describe an
[image: image16.wmf]O(log)

EV

-time algorithm that, given T, computes max[u, v] for all u, v
[image: image17.wmf]Î

 V.
Hint: one way to do this is to use dynamic trees, as presented in class by Renato Werneck. Another way to do this is to use path compression with naïve union, modifying and extending the NCA algorithm in Problem 3 appropriately.
d. Give an efficient algorithm to compute the second-best minimum spanning tree of G.
5. Suppose we run Dijkstra’s single-source shortest path algorithm as described in class: any vertex, upon receiving a smaller tentative distance, goes back into the labeled set and into the heap if it is not already there.

a. Construct a class of example graphs with some negative edges but no negative cycles on which this algorithm does an exponential number of scanning steps.
b. Assume that all edge lengths are integers in the range from –L to L. Give an upper bound on the maximum number of scanning steps as a function of the number of vertices
[image: image18.wmf]n

 and of
[image: image19.wmf]L.

_1141452486.unknown

_1141454067.unknown

_1141454709.unknown

_1141457155.unknown

_1141454741.unknown

_1141454090.unknown

_1141453763.unknown

_1141453992.unknown

_1141452529.unknown

_1141451949.unknown

_1141451066.unknown

_1141451826.unknown

